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Abstract

The purpose of this tutorial is to introduce the main concepts behind normal and

anomalous diffusion. Starting from simple, but well known experiments, a series

of mathematical modeling tools are introduced, and the relation between them is

made clear. First, we show how Brownian motion can be understood in terms of

a simple random walk model. Normal diffusion is then treated (i) through formal­

izing the random walk model and deriving a classical diffusion equation, (ii) by

using Fick’s law that leads again to the same diffusion equation, and (iii) by using

a stochastic differential equation for the particle dynamics (the Langevin equa­

tion), which allows to determine the mean square displacement of particles. (iv)

We discuss normal diffusion from the point of view of probability theory, applying

the Central Limit Theorem to the random walk problem, and (v) we introduce the

more general Fokker­Planck equation for diffusion that includes also advection. We

turn then to anomalous diffusion, discussing first its formal characteristics, and

proceeding to Continuous Time Random Walk (CTRW) as a model for anomalous

diffusion. It is shown how CTRW can be treated formally, the importance of prob­

ability distributions of the Levy type is explained, and we discuss the relation of

CTRW to fractional diffusion equations and show how the latter can be derived from

the CTRW equations. Last, we demonstrate how a general diffusion equation can

be derived for Hamiltonian systems, and we conclude this tutorial with a few recent

applications of the above theories in laboratory and astrophysical plasmas.
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Time Random Walk, Diffusion Equation
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1 Introduction

The art of doing research in physics usually starts with the observation of

a natural phenomenon. Then follows a qualitative idea on "How the phe­

nomenon can be interpreted", and one proceeds with the construction of a

model equation or a simulation, with the aim that it resembles very well the

observed phenomenon. This progression from natural phenomena to mod­

els and mathematical prototypes and then back to many similar natural

phenomena, is the methodological beauty of our research in physics.

Diffusion belongs to this class of phenomena. All started from the obser­

vations of several scientists on the irregular motion of dust, coal or pollen

inside the air or a fluid. The roman Lucretius in his poem on the Nature of

Things (60 BC) described with amazing details the motion of dust in the air,

Jan Ingenhousz described the irregular motion of coal dust on the surface

of alcohol in 1785, but Brownian motion is regarded as the discovery of

the botanist Robert Brown in 1827, who observed pollen grains executing

a jittery motion in a fluid. Brown initially thought that the pollen particles

were "alive", but repeating the experiment with dust confirmed the idea that

the jittery motion of the pollen grains was due to the irregular motion of the

fluid particles.

The mathematics behind "Brownian motion" was first described by Thiele

(1880), and then by Louis Bachelier in 1900 in his PhD thesis on "the theory

of speculation", in which he presented a stochastic analysis of the stock

and option market. Albert Einstein’s independent research in 1905 brought

to the attention of the physicists the main mathematical concepts behind

Brownian motion and indirectly confirmed the existence of molecules and

atoms (at that time the atomic nature of matter was still a controversial idea).

As we will see below, the mathematical prototype behind Brownian motion

became a very useful tool for the analysis of many natural phenomena.

Several articles and experiments followed Einstein’s and Marian Smolu­

chowski’s work and confirmed that the molecules of water move randomly,

therefore a small particle suspended in the fluid experiences a random num­

ber of impacts of random strength and direction in any short time. So, after

Brown’s observations of the irregular motion of "pollen grains executing a

jittery motion", and the idea of how to interpret it as "the random motion of

particles suspended inside the fluid", the next step is to put all this together

in a firm mathematical model, "the continuous time stochastic process."

The end result is a convenient prototype for many phenomena, and today’s

research on "Brownian motion" is used widely for the interpretation of many

phenomena.
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This tutorial is organized as follows: In Sec. 2, we give an introduction

to Brownian motion and classical random walk. Sec. 3 presents different

models for classical diffusion, the Langevin equation, the approach through

Fick’s law, Einstein’s approach, the Fokker­Planck equation, and the cen­

tral limit theorem. In Sec. 4, the characteristics of anomalous diffusion

are described, and a typical example, the rotating annulus, is presented.

Sec. 5 introduces Continuous Time Random Walk, the waiting and the ve­

locity model are explained, methods to solve the equations are discussed,

and also the Levy distributions are introduced. In Sec. 6, it is shown how,

starting from random walk models, fractional diffusion equations can be

constructed. In Sec. 7 we show how a quasi­linear diffusion equation can

be derived for Hamiltonian systems. Sec. 8 briefly comments on alterna­

tive ways to deal with anomalous diffusion, Sec. 9 contains applications to

physics and astrophysics, and Sec. 10 presents the conclusions.

2 Brownian Motion and Random walks

2.1 Brownian Motion Interpreted as a Classical Random Walk

To build a firm base for the stochastic processes involved in Brownian mo­

tion, we may start with a very simple example.

Fig. 1. Random walk in one dimension (along the vertical axis) as a function of time

(to the right on the horizontal axis).

We consider a random walk in one dimension (1D) and assume that the

particles’ steps ∆z are random and equally likely to either side, left or right,

and of constant length ℓ (see Fig. 1). The position zN of a particle starting at
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z0 = 0 after N steps is

zN = ∆zN + ∆zN−1 + ..... + ∆z1 =
N
∑

i=1

∆zi, (1)

so that the squared length of the path equals

z2
N =





N
∑

j=1

∆zj





(

N
∑

k=1

∆zk

)

=
N
∑

j,k=1

∆zj∆zk

=
N
∑

j=1, k=j

∆z2
j +

N
∑

j,k=1, k 6=j

∆zj∆zk = Nℓ2 +
N
∑

j,k=1, j 6=k

∆zj∆zk. (2)

When averaging over a large number of particles, we find the mean squared

path length as

< z2
N >= Nℓ2 +

〈

N
∑

j,k=1, j 6=k

∆zj∆zk

〉

. (3)

Each step of the walk is equally likely to the left or to the right, so that

the displacements ∆zi are random variables with zero mean. The products

∆zj∆zk are also random variables, and, since we assume that ∆zj and ∆zk

are independent of each other, the mean value of the products is zero, so

that the expectation value of the mixed term in Eq. (3) is zero. We thus find

< z2 >= Nℓ2. (4)

The root­mean square displacement afterN steps of constant length ℓ (mean

free path) is

R :=
√

< z2
N > = ℓ

√
N. (5)

We can now estimate the number of steps a photon starting from the Sun’s

core needs to reach the surface of the Sun. From Eq. (5), we haveN = (R/ℓ)2

and since the Sun’s radius is ∼ 1010 cm and the characteristic step (taken

into account the density in the solar interior) is ∼ 1 cm, we conclude that

photons make 1020 steps before exiting from the Sun’s surface (this can

answer questions like: if the Sun’s core stops producing energy, how long

will it take until we feel the difference on Earth?).

The mean free path ℓ can be estimated with a simple model. By assuming

that a particle is moving inside a gas with a mean speed < v >, the distance
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traveled between two successive collisions is ℓ =< v > τ , where τ is called

collision time. If the particle has radius a and travels a distance L inside

the gas with density n, then it will suffer 4πa2Ln collisions, which is just the

number of particles in the volume 4πa2L the particle sweeps through. The

mean free path is then defined through the relation 4πa2ℓn = 1, i.e. ℓ is the

distance to travel and to make just one collision, so that

ℓ =
1

4πa2n
. (6)

We may thus conclude that the number of steps a particle executes inside

a gas during a time t is N = t/τ , and, with Eq. (4) and the above relation

ℓ =< v > τ , the mean squared distances it travels is

< z2 >= Nℓ2 = (t/τ)(< v > τ)ℓ = (< v > ℓ)t. (7)

Assuming that the random walk takes place in 3 dimensions and that the

gas is in equilibrium and isotropic, we expect that < x2 >=< y2 >=< z2 >=
<r2>

3
, and the mean square path length in 3 dimensions is

< r2 >= 3 < v > ℓt = Dt, (8)

where D := 3 < v > ℓ is called the diffusion coefficient, which is a useful

parameter to characterize particle diffusion in the normal case (see Sec. 3).

Important here is to note the linear scaling relation between < r2 > and

time t.

2.2 Formal Description of the Classical Random Walk

More formally, we can define the classical random walk problem as follows.

We consider the position ~r of a particle in 1, 2, or 3 dimensional space, and

we assume that the position changes in repeated random steps ∆~r. The

time ∆t elapsing between two subsequent steps is assumed to be constant,

time plays thus a dummy role, it actually is a simple counter. The position

~rn of a particle after n steps, corresponding to time tn = n∆t, is

~rn = ∆~rn + ∆~rn−1 + ∆~rn−2 + ... + ∆~r1 + ~r0 (9)

where ~r0 is the initial position, and ∆~ri is the ith step (or increment, or

displacement). The position ~rn as well as the increments ∆~ri are all ran­

dom variables. To specify the problem completely, we have to prescribe the

probability distribution q∆~r(∆~r) for the increments ∆~ri, which yields the
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probability for the particle to make a certain step ∆~ri (with given length and

direction). Writing q∆~r(∆~r) in this way, we have made the assumptions that

all the increments have the same probability distribution and that the incre­

ments are independent of each other (the value ∆~ri takes in any realization

is completely independent of the value taken in the previous step by ∆~ri−1).

Generalizations to time­dependent increment distributions or correlated in­

crements are of course possible.

Since ~rn is a random variable, the solution we are looking for in the random

walk problem is in the form of the probability distribution P (~r, tn), which

yields the probability for a particle to be at position ~r at time t = tn ≡ n∆t.

If we are interested in the mean square displacement, we can just square

Eq. (9), and, rearranging the terms in the same way as in Eq. (2), we find

for ~r0 = 0

〈~r 2
n〉 =

n
∑

j=1, (k=j)

〈∆~r 2
j 〉 +

n
∑

j,k=1, k 6=j

〈∆~rj∆~rk〉. (10)

The first term on the right hand side is just a sum over the variances σ2
∆~r, j

of q∆~r(∆~r), since by definition σ2
∆~r := 〈∆~r 2

j 〉 =
∫

∆~r 2q∆~r(∆~r) d∆~r if the

mean value of q∆~r(∆~r) is zero. The second term on the right hand side is

the covariance cov(∆~rj,∆~rk) of the random walk steps, and it is zero if the

steps a particle takes are independent of each other. We thus can write Eq.

(10) as

〈~r 2
n〉 =

n
∑

j=1, (k=j)

σ2
∆~r, j +

n
∑

j,k=1, k 6=j

cov(∆~rj ,∆~rk). (11)

The particular random walk we considered in Sect. 2.1 can thus be under­

stood on the base of Eq. (11) as a case with zero covariance and variance

σ2
∆~r, j = ℓ2, due to the constant step length, which leads to the mean square

displacement in Eq. (4).

3 Models for Normal Diffusion

3.1 Langevin’s Equation

We turn now to a different way of treating Brownian motion. We again con­

sider a particle with mass m performing a random walk inside a fluid due

to the bombardment by the fluid molecules, which obey an equilibrium
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(Maxwellian) distribution. Pierre Langevin (Langevin, 1908) described this

motion with a simple but very interesting stochastic differential equation

(let us work in one dimension for simplicity),

mẍ = −aẋ+ F (t), (12)

where the term aẋ represents the friction force, ẋ is the particle velocity,

a is the damping rate and depends on the radius of the particle and the

viscosity of the fluid, and F (t) is a random fluctuating force due to the

random bombardment of the particle by the fluid molecules. If the random

fluctuating force were absent, the particle starting with an initial velocity

v0 would gradually slow down due to the friction term. Multiplying Eq. (12)

with x, we have

mxẍ = m

[

d(xẋ)

dt
− ẋ2

]

= −axẋ+ xF (t),

and after taking averages over a large number of particles we find, since

< xF (t) >= 0 due to the irregular nature of the force F (t),

m
d < xẋ >

dt
= m < ẋ2 > −a < xẋ > . (13)

Since the background gas is is in equilibrium, the kinetic energy of the

particle is proportional to the gas temperature, m < ẋ2 > /2 = kT/2, where

k is the Boltzmann constant and T the temperature of the gas. Eq. (13) now

takes the form

(

d

dt
+ γ

)

< xẋ >=
kT

m
,

where γ = a/m, which has the solution

< xẋ >=
1

2

d < x2 >

dt
= Ce−γt +

kT

a
. (14)

At t = 0, the mean square displacement is zero, so that 0 = C + kT/a, and

Eq. (14) becomes

1

2

d < x2 >

dt
=
kT

a
(1 − e−γt).
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On integrating the above equation we find the solution

< x2 >=
2kT

a

[

t− 1

γ

(

1 − e−γt
)

]

. (15)

In the limit t << 1/γ (time much shorter than the collision time) the solution

in Eq. (15) is of the form < x2 >∼ t2 (expanding the exponential up to

second order), which is called "ballistic" diffusion and means that at small

times particles are not hindered by collisions yet and diffuse very fast, see

Sect. 4.2. In the other limit, t >> 1/γ, the solution has the form

< x2 >∼ 2kT

a
t, (16)

or, for the 3 dimensional case, if again the gas is in equilibrium and isotropic

so that < r2 > /3 =< x2 >,

< r2 >=
6kT

a
t = Dt, (17)

where D = 6kT/a is an expression for the diffusion constant in terms of

particle and fluid characteristics (cf. Eq. (8)), and note that again < r2 >
has a simple scaling relation with time, < r2 >= Dt, as in Sect. 2.1.

3.2 Modeling Diffusion with Fick’s Law

Diffusion usually occurs if there is a spatial difference in concentration of

e.g. particles or heat etc., and it usually acts such as to reduce the spatial

inhomogeneities in concentration.

Let us consider particle diffusion along the z­direction in 3­dimensional

space, and let us assume that two elementary areas perpendicular to the

flow (in the x­y­plane) are a distance ∆z apart. Particle conservation implies

that the time variation of the density n(z, t) inside the elementary volume

∆x∆y∆z equals the inflow minus the outflow of particles, so that, if J(z, t)
denotes the particle flux,

∂n(z, t)

∂t
∆x∆y∆z = J(z)∆x∆y − J(z + ∆z)∆x∆y = −∂J

∂z
∆x∆y∆z

which leads to the diffusion equation in its general form,

∂n(z, t)

∂t
= −∂J(z, t)

∂z
. (18)
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The problem that remains is to determine the particle flux J . From its phys­

ical meaning, it obviously holds that

J(z, t) = n(z, t)v(z, t), (19)

where v(z, t) is an average particle flow velocity. Using this expression in Eq.

(18) leads to a closure problem, we would need to find ways to determine

v(z, t).

It is well documented experimentally that the flux of particles J crossing

a certain area (again, say in the x­y­plain) is proportional to the density

gradient along the z­axis (Fick’s Law),

Jz = −D(z)
∂n

∂z
, (20)

where D is the diffusion coefficient discussed already in the previous sec­

tions, and which generally may also depend on z. With Eq. (20), the diffusion

equation takes the classical form

∂n(z, t)

∂t
=

∂

∂z
D(z)

∂n(z, t)

∂z
, (21)

or, for constant diffusion coefficient,

∂n(z, t)

∂t
= D

∂2n(z, t)

∂z2
. (22)

In infinite space, and if all particles start initially from z = 0, the solution of

Eq. (22) is

n(z, t) =
N0√
4πDt

e−z2/4Dt, (23)

where N0 is the total number of particles inside the volume under consid­

eration. The solution obviously is identical to a Gaussian distribution with

mean zero and variance 2Dt. The variance is defined as

< z2(t) >=
∫

z2n(z, t) dz = 2Dt, (24)

which is just identical to the mean square displacement, so that the results

obtained earlier, using the simple version of the random walk in Sect. 2.1

or the stochastic differential equation of Langevin in Sect. 3.1, are again

confirmed.
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Diffusion obeying Eq. (24) is called normal diffusion and is characteristic

for the diffusion processes in systems that are in equilibrium or very close

to equilibrium. Generalizing the above results (Eqs. (21), (22), (23), (24)

is simple and can be found in the literature (see references).

3.3 Einstein’s Formalism for the Classical Random Walk and the Diffusion

Equation

A different approach to treat normal diffusion was introduced by Bachelier

and by Einstein (see Einstein, 1905). Here, the starting point is the classical

random walk as defined in Sec. 2.2, and we consider the 1­dimensional

case. According to Sec. 2.2, the solution of the random walk problem is in

the form of the probability distribution P (z, t) for a particle at time t to be

at position z. Assume that we would know the distribution P (z, t−∆t) one

time­step ∆t earlier (remember ∆t is assumed constant). If particles are

conserved, the relation

P (z, t) = P (z − ∆z, t− ∆t) q∆z(∆z). (25)

must hold, with q∆z the distribution of random walk steps. Eq. (25) states

that the probability to be at time t at position z equals the probability to

have been at position z − ∆z at time t − ∆t, and to have made a step of

length ∆z. We still have to sum over all possible ∆z, which leads to the

Einstein (or Bachelier) diffusion equation,

P (z, t) =

∞
∫

∞

P (z − ∆z, t− ∆t) q∆z(∆z) d∆z (26)

This is an integral equation that determines the solution P (z, t) of the ran­

dom walk problem as defined in Sec. 2.2. The power of this equation will

become clear below when we will show ways to treat cases of anomalous dif­

fusion. Here, we still focus on normal diffusion. As will become clear later,

it is actually a characteristic of normal diffusion that the particles take only

small steps ∆z compared to the system size. This implies that q∆z(∆z) is

non­zero only for small ∆z, the integral in Eq. (26) is only over a small

∆z­range, and we can expand P (z−∆z, t−∆t) in z and t (also ∆t is small),

P (z − ∆z, t− ∆t) =P (z, t) − ∆t ∂tP (z, t) − ∆z ∂zP (z, t)

+
1

2
∆z2 ∂2

zP (z, t) (27)

Inserting into Eq. (26), we find
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P (z, t) =
∫

P (z, t) q∆z(∆z) d∆z −
∫

∆t∂tP (z, t) q∆z(∆z) d∆z

−
∫

∆z∂zP (z, t) q∆z(∆z) d∆z

+
∫

1

2
∆z2 ∂2

zP (z, t) q∆z(∆z) d∆z (28)

Obviously, P (z, t), its derivatives, and ∆t are not affected by the integration,

furthermore we use the normalization of q∆z (
∫

q∆z(∆z) d∆z = 1), we assume

q∆z to be symmetric (mean value zero,
∫

∆z q∆z(∆z) d∆z = 0), and we use

the definition of the variance σ2
∆z (

∫

∆z2 q∆z(∆z) d∆z = σ2
∆z), so that

P (z, t) = P (z, t) − ∆t ∂tP (z, t) +
1

2
σ2

∆z ∂
2
zP (z, t) (29)

or

∂tPz, t =
σ2

∆z

2∆t
∂2

zP (z, t) (30)

i.e. we again recover the simple diffusion equation, as in Sec. 3.2, with

diffusion coefficient D =
σ2

∆z

2∆t
, and the solution to it in infinite space is again

the Gaussian of Eq. (23).

3.4 Fokker­Planck Equation

The Fokker­Planck (FP) equation (or Kolmogorov forward equation) is a more

general diffusion equation than the simple equations introduced in Secs.

3.2 an 3.3. We again start from a description of diffusion in terms of a

random walk, as in Sec. 3.3, we though relax two assumptions made there:

(i) We assume now that the mean value µ∆z of the random walk steps can

be different from zero, which corresponds to a systematic motion of the

particles in the direction of the sign of µ∆z, and (ii) we assume that both

the mean and the variance can be spatially dependent, µ∆z = µ∆z(z) and

σ2
∆z = σ2

∆z(z), which means that the distribution of increments depends on

the spatial location, i.e. it is of the form q∆z,z(∆z, z). To be compatible with

these assumptions, Eq. (26) must be rewritten in a slightly more general

form,

P (z, t) =

∞
∫

∞

P (z − ∆z, t− ∆t)q∆z,z(∆z, z − ∆z) d∆z, (31)

which is the Chapman­Kolmogorov equation, and where now q∆z,z(∆z, z) is

the probability density for being at position z and making a step ∆z in time

11



∆t. The FP equation can be derived in a way similar to the one presented in

Sec. 3.3: We expand the integrand of Eq. (31) in a Taylor­series in terms of

z, so that P (z, t) =
∫∞
∞ AB d∆z, with

A = P (z, t) − ∂tP (z, t)∆t− ∂zP (z, t)∆z +
1

2
∂2

zP (z, t)∆z2 + ..., (32)

where we have also expanded to first order in t, and which is of course the

same as Eq. (27), and newly we have

B = q∆z,z(∆z, z) − ∂zq∆z,z(∆z, z)∆z +
1

2
∂2

z q∆z,z(∆z, z)∆z
2 + ... (33)

(note that the Taylor expansion is with respect to the second argument of

q∆z,z, we expand only with respect to z, not though with respect to ∆z). In

multiplying and evaluating the integrals, we use the normalization of q∆z,z

(
∫

q∆z,z(∆z, z) d∆z) = 1), the definition of the mean value

(µ∆z(z) :=
∫

∆zq∆z,z(∆z, z) d∆z) and of the second moment (〈∆z2〉(z) :=
∫

∆z2q∆z,z(∆z, z) d∆z), and expressions like
∫

∆z ∂zq∆z,z(∆z, z) d∆z are con­

sidered to equal ∂z

∫

∆zq∆z,z(∆z, z) d∆z ≡ ∂zµ∆z(z), so that, on keeping all

terms up to second order in ∆z, we find the Fokker­Planck equation,

∂tP (z, t) = −∂z [V (z)P (z, t)] + ∂2
z [D(z)P (z, t)], (34)

with V (z) ≡ µ∆z(z)/∆t a drift velocity, and D(z) ≡ 〈∆z2〉(z)/2∆t the dif­

fusion coefficient (for a 3 dimensional formulation see e.g. Gardiner, 2004).

The basic difference between the FP equation and the simple diffusion equa­

tion in Eq. (30) is the appearance of a drift term, and that both the drift

velocity and the diffusion coefficient are allowed to be spatially dependent

(Fick’s law also allows a spatially dependent diffusion coefficient, see Eq.

(21)). These differences allow the FP equation to model more complex diffu­

sive behaviour.

The FP equation is also applied to velocity space, e.g. in plasma physics in

order to treat collisional effects, or to position and velocity space together. It

has the advantage of being a deterministic differential equations that allows

to describe the evolution of stochastic systems, as long as the diffusivities

and drift velocities are known, and as long as the conditions for its applica­

bility are met, see the remarks below.

We can illustrate the typical use of the FP equation on the example of Brow­

nian motion in the Langevin formalism in Sec. 3.1, which allowed us to

calculate the diffusion coefficient in Eq. (17). If we are interested in the evo­

lution of the distribution of particles P , then with the Langevin formalism we

would have to follow a large number of individual particles over the times of
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interest and then to construct the distribution function, which may become

very intense in computing effort. Instead, one can use the diffusivity from

Eq. (17), insert it into the FP equation, and solve the FP equation. Since in

this example the diffusion coefficient is constant and there is no drift ve­

locity, the FP equation reduces to the simple diffusion equation (22), whose

solution for P is given in Eq. (23).

We just note that in the general case where the diffusion coefficient is z­
dependent, D = D(z), there is a small difference between the diffusive term

in the Fokker­Planck equation and the Fickian diffusion equation, Eq. (21),

in that the diffusivity is only once differentiated in the latter. This difference

and its consequences are analyzed in van Milligen et al. (2005).

>From its derivation it is clear that the FP equation is suited only for sys­

tems close to equilibrium, with just small deviations of some particles from

equilibrium, or, in the random walk sense, with just small steps of the parti­

cles performing the random walk, exactly as it holds for the simple diffusion

equation in Sect. 3.3.

A further natural generalization for a diffusion equation in the approach

followed here would be not to stop the Taylor expansion in Eqs. (32) and

(33) at second order in z, but to keep all terms, which would lead to the

so­called Kramers­Moyal expansion.

More details about the Fokker­Planck equation can be found in the literature

(e.g. Gardiner, 2004).

3.5 Why Normal Diffusion Should Be the Usual Case

The appearance of normal diffusion in many natural phenomena close to

equilibrium and the particular Gaussian form of the solution of the diffusion

equation can also be understood from probability theory. The Central Limit

Theorem (CLT) states that if a statistical quantity (random variable) is the

sum of many other statistical quantities, such as the position of a random

walker after n steps according to Eq. (9), and if (i) all the ∆zi have finite

mean µ∆z and variance σ2
∆z, (ii) all the ∆zi are mutually independent, and

(iii) the number n of the ∆z is large, then, independent of the distribution

of the ∆zi’s, the distribution P (z, tn) of zn is a Gaussian. In particular, if

µ∆z = 0, z0 = 0 and all the ∆zi have the same variance, then

P (z, tn) =
1

2πnσ2
∆z

e
− z

2

2nσ
2

∆z (35)
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with variance σ2
zn

= nσ2
∆z, or, if we set n = t/∆t, then σ2

zn

= tnσ
2
∆z/∆t.

The mean square displacement equals per definition the variance,

〈z(tn)2〉 =
∫

z2P (z, tn) dz = σ2
zn

= tnσ
2
∆z/∆t (36)

(for z0 = 0), and diffusion is thus always normal in the cases where the CLT

applies.

Moreover, the CLT predicts quantities that are the result of many small scale

interactions to be distributed according to a Gaussian, and indeed this is

what we found for the distribution of the classical random walker, see Eq.

(23). Stated differently, we may say that the appearance of non­Gaussian

distributions is something unexpected and unusual according to the CLT.

We just mention that also the equilibrium velocity distributions of gas or

fluid particles are in accordance with the CLT, the velocity components,

say vx, vy, vz, follow Gaussian distributions, and therewith the magnitude

v =
√

v2
x + v2

y + v2
z exhibits a Maxwellian distribution. Again then, the ap­

pearance of non­Maxwellian velocity distributions is unexpected on the base

of the CLT.

4 Anomalous Diffusion

4.1 Systems Far from Equilibrium: The rotating Annulus

The simple experiment of the rotating annulus, shown in Fig. 2, allows to il­

lustrate the differences between normal and anomalous diffusion (Solomon,

Weeks & Swinney, 1994; Weeks, Urbach & Swinney, 1996). Water is pumped

into the annulus through a ring of holes marked with I and pumped out

through a second ring of holes marked with O. The annulus is completely

filled with water and rotates as a rigid body (the inner and outer walls rotate

together). The pumping of the fluid generates a turbulent flow in the annu­

lus. A camera on top of the annulus records the formation of the turbulent

eddies inside the rotating annulus and allows to track seeds of different

tracer particles injected into the fluid and to monitor their orbits (see Fig.

3).

In the case of normal diffusion, which occurs mainly in fluids close to equi­

librium, the particle trajectories are characterized by irregular, but small

steps, which makes trajectories look irregular but still homogeneous (see

Fig. 1). The trajectories shown in Fig. 3 for the highly turbulent rotating

14



Fig. 2. Rotating annulus.

Fig. 3. (a) The formation of eddies inside the rotating annulus, as recorded by the

camera (left panel), and (b) typical orbits of tracer particles inside the annulus (right

panel).

annulus, which is far away from equilibrium, show different types of orbits,

with two basic new characteristic, there is ‘‘trapping" of particles inside the

eddies, where particles stay for ’unusually’ long times in a relatively small

spatial area, and there are "long flights" of particles, where particles are

carried in one step over large distances, in some cases almost through the

entire system.

4.2 The Scaling of "Anomalous" Trajectories

Normal diffusion has as basic characteristic the linear scaling of the mean

square displacement of the particles with time, 〈r2〉 ∼ Dt. Many different
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experiments though, including the one shown in the previous section, reveal

deviations from normal diffusion, in that diffusion is either faster or slower,

and which is termed anomalous diffusion. A useful characterization of the

diffusion process is again through the scaling of the mean square displace­

ment with time, where though now we are looking for a more general scaling

of the form

〈r2(t)〉 ∼ tγ. (37)

Diffusion is then classified through the scaling index γ. The case γ = 1 is

normal diffusion, all other cases are termed anomalous. The cases γ > 1
form the family of super­diffusive processes, including the particular case

γ = 2, which is called ballistic diffusion, and the cases γ < 1 are the sub­

diffusive processes. If the trajectories of a sufficient number of particles in­

side a system are known, then plotting log < r2 > vs log t is an experimental

way to determine the type of diffusion occurring in a given system.

As an illustration, let us consider a particle that is moving with constant

velocity v and undergoes no collisions and experiences no friction forces. It

then obviously holds that r = vt, so that 〈r2(t)〉 ∼ t2. Free particles are thus

super­diffusive in the terminology used here, which is also the origin of the

name ballistic for the case γ = 2. Accelerated particles would even diffuse

faster. The difference between normal and a anomalous diffusion is also

illustrated in Fig. 4, where in the case of anomalous diffusion long "flights"

are followed by efficient "trapping" of particles in localized spatial regions,

in contrast to the more homogeneous picture of normal diffusion.

Fig. 4. (a) Random walk in dynamical systems close to equilibrium (normal diffu­

sion; trajectory on the left), (b) random walk in dynamical systems far from equi­

librium (anomalous diffusion; trajectory on the right).
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It is to note that anomalous diffusion manifests itself not only in the scaling

of Eq. (37) with γ 6= 1 (which experimentally may also be difficult to be mea­

sured), but also in ’strange’ and ’anomalous’ phenomena such as ’uphill’

diffusion, where particles or heat diffuse in the direction of higher concen­

tration, or the appearance of non­Maxwellian distributed particle velocities

(see Sec. 3.5), very often of power­law shape, which is very common in high

energy astrophysics (e.g. cosmic rays), etc.

5 Continuous Time Random Walk

5.1 Definition

Given the experimental ubiquity of anomalous diffusion phenomena, the

question arises of how to model such phenomena. One way of tackling it

is through the random walk formalism. So­far, we have used the random

walk to model classical diffusion, and in Sec. 3.3 it had been shown how

the random walk is related to a simple diffusion equation if the steps the

particles take on their walk are small. One way to model anomalous diffusion

is by relaxing the latter condition, and to allow the particles to also take large

steps, where ’large’ in a finite system means large up to system size, and

in infinite systems it means that the steps are unbounded in length. Useful

in this context is the family of Levy distributions as step­size distributions

q∆z. They are defined in closed form in Fourier space (see Sec. 5.3.3 below),

and they have the property that

qL,α
∆z (∆z) ∼ |∆z|−1−α, for |∆z| large, 0 < α < 2, (38)

so that there is always a small, though finite probability for any arbitrar­

ily large steps size. The Levy distributions all have an infinite variance,

σ2
L,α =

∫

∆z2qL,α
∆z (∆z) d∆z = ∞, which makes their direct use as a step size

distribution in the classical random walk of Sec. 2.2 and Eq. (9) impossible:

Consider the case of a random walk in 1­D, with the position of the random

walker after n steps given by the 1­D version of Eq. (9), and the mean square

displacement (for z0 = 0) given by Eq. (11). Let us assume that the steps are

independent of each other, so that the covariances are zero and the mean

square displacement is 〈z2
n〉 = nσ2

L,α, which is infinite, already after the first

step.

A way out of the problem is to release time from its dummy role and make

it a variable that evolves dynamically, as the walker’s position does. In this

way, infinite steps in space can be accompanied by an infinite time for the
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step to be completed, and the variance of the random walk, i.e. its mean

square displacement, remains finite. The extension of the random walk to

include the timing is called Continuous Time Random Walk (CTRW). Its

formal definition consists again of Eq. (9), as described in Sec. 2.2, and,

moreover, the time at which the nth step of the walk takes place is now also

random (a random variable), and it evolves according to

tn = ∆tn + ∆tn−1 + ∆tn−2 + ... + ∆t1 + t0, (39)

where t0 is the initial time, and the ∆ti are random temporal increments.

To complete the definition of the CTRW, we need also to give the probability

distribution of the ∆ti, i.e. we must specify the probability for the ith step

to last a time ∆ti.

Two case are usually considered (not least to keep the technical problems

at a manageable level). (i) In the waiting model, the steps in position and

time are independent, and one specifies two probabilities, one for ∆~r, the

q∆~r already introduced, and one for ∆t, say q∆t. Here then ∆t is interpreted

as a waiting time, the particle waits at its current position until the time

∆t is elapsed, and then it performs a spatial step ∆~r during which no time

is consumed (e.g. Montroll & Weiss, 1965). (ii) In the velocity model, the

time ∆t is interpreted as the traveling time of the particle, ∆t = |∆~r|/v,
where v is an assumed constant velocity (the velocity dynamics is not in­

cluded, usually, see though Sec. 5.4), so that the distribution of increments

is q∆z,∆t = δ(∆t−|∆~r|/v)q∆~r(∆~r) (e.g. Shlesinger, West & Klafter, 1987). We

just note that in the general case one would have to specify the joint prob­

ability distribution q∆z,∆t(∆z,∆t) for the spatial and temporal increments.

5.2 The CTRW Equations

The CTRW equations can be understood as a generalization of the Einstein

equation, Eq. (26), or the Chapman­Kolmogorov equation, Eq. (31). It is

useful to introduce the concept of the turning­points, which are the points at

which a particle arrives at and starts a new random walk step. The evolution

equation of the distribution of turning points Q(z, t) (here in 1­D) follows

basically from particle conservation,

Q(z, t) =
∫

d∆z

t
∫

0

d∆tQ(z − ∆z, t− ∆t)q∆z,∆t(∆z,∆t)

+ δ(t)P (z, t = 0) + S(z, t), (40)
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where the first term on the right side describes a completed random walk

step, including stepping in space and in time, the second term takes the

initial condition P (z, t = 0) into account, and the third term S is a source

term (see e.g. Zumofen & Klafter, 1993).

The expression for P (z, t), the probability for the walker to be at position z
at time t, is different for the waiting and for the velocity model, respectively.

In case of the waiting model, where q∆z,∆t(∆z,∆t) = q∆t(∆t)q∆z(∆z), we

have

PW (z, t) =

t
∫

0

d∆tQ(z, t− ∆t)ΦW (∆t), (41)

with ΦW (∆t) :=
∫∞
∆t dt

′q∆t(t
′) the probability to wait at least a time ∆t (e.g.

Zumofen & Klafter, 1993).

In the velocity model, where q∆z,∆t(∆z,∆t) = δ(∆t−|∆z|/v) q∆z(∆z), P (z, t)
takes the form

PV (z, t) =

vt
∫

−vt

d∆z

t
∫

0

d∆tQ(z − ∆z, t− ∆t),ΦV (∆z,∆t) (42)

with

ΦV (∆z,∆t) =
1

2
δ(|∆z| − v∆t)

∞
∫

|∆z|

dz′
∞
∫

∆t

dt′δ(t′ − |z′|/v)q∆z(z
′) (43)

the probability to make a step of length at least |∆z| and of duration at least

∆t (e.g. Zumofen & Klafter, 1993; Shlesinger, West & Klafter, 1987).

Both, the expression for PW and PV determine the probability for seeing the

particle when moving in­between two turning points, taking into account

only the part of the random walk in which time is consumed by the particle.

The kind of diffusion that the CTRW formalism yields depends on the distri­

bution of step increments. If the increments are small, then the treatment

of Sec. 3.3 can be applied again, diffusion is normal, and again a simple

diffusion equation can be derived. If the increments are not small, then

super­ as well as sub­diffusion can result, depending on the concrete choice

of increment distributions. For instance, small spatial steps in combina­

tion with Levy­distributed, long waiting times will yield sub­diffusion in the

waiting model. An important property of the CTRW equations is that they

are non­local, both in space and time (which is also termed non­Markovian).
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Anomalous diffusion phenomena in the CTRW approach are thus considered

non­local processes, and with that they are far from equilibrium processes.

5.3 Treating the CTRW Equations

5.3.1 Remarks on the solution of the CTRW equations

A standard way to treat the CTRW equation is by transforming them to

Fourier (F) and Laplace (L) space, whereby the convolution theorems of the

two transforms are used. We will illustrate this procedure on the example

of the waiting model below in Sec. 5.3.4.

The CTRW equations are though not always of a convolution type, e.g. the

velocity model has not a convolution structure anymore, due to the ap­

pearance of time in the integration limits (see Eq. (42)), so that Fourier

Laplace methods are not directly applicable anymore, and other methods

are needed (actually also in the expression for Q, Eq. (40), time appears in

the ∆z­integration limits in case of the velocity model).

FL transforms, if applicable, usually do not allow to calculate the probability

P (z, t) in closed analytical form, but rather some asymptotic properties of it,

such as the mean square displacement at large times (e.g. Klafter, Blumen

& Shlesinger, 1987; Blumen, Zumofen & Klafter, 1989). On the other hand,

FL transforms, if applicable, allow to transform the CTRW equations into

other kinds of equations, e.g. in one instead of the two integral equations

(Klafter, Blumen & Shlesinger, 1987; Blumen, Zumofen & Klafter, 1989,

e.g.), into an integro­differential equation (or master equation, e.g. Klafter,

Blumen & Shlesinger, 1987), or even into a fractional diffusion equation,

which has the form of a diffusion equations, the fractional derivatives are

though generalized, non­local differentiation operators. In Sec. 6.2, we will

show how a fractional diffusion equation arises naturally in the context of

the waiting model (see also e.g. Metzler & Klafter, 2000, 2004).

Another standard way of treating the CTRW equations is with Monte Carlo

simulations (see e.g. Vlahos, Isliker & Lepreti, 2004), or else, the equations

can be solved numerically, with an appropriate method (Isliker, 2008).

5.3.2 Fourier and Laplace transforms of probability densities

For any probability density function (pdf) such as q∆z, we can define the

Fourier transform as (z → k)

q̂∆z(k) =
∫

e−ik∆zq∆z(∆z) d∆z, (44)
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which is often called the characteristic function of q∆z. Considering then the

expression

in∂n
k q̂∆z(k)

∣

∣

∣

k=0
= in

∫

(−i∆z)ne−ik∆zq∆z(∆z) d∆z
∣

∣

∣

k=0

=
∫

∆znq∆z(∆z) d∆z, (45)

for n = 0, 1, 2, 3..., we see that, because q∆z is a pdf, the last expression is

the expectation value 〈∆zn〉 of ∆zn, the so­called nth moment, and we have

in∂n
k q̂∆z(0) = 〈∆zn〉. (46)

In particular, it always holds that 〈∆z0〉 = 1, since q∆z is a pdf that is

normalized to one (〈∆z0〉 =
∫

q∆z(∆z) d∆z = 1). Furthermore, 〈∆z1〉 =
∫

∆zq∆z(∆z) d∆z is the mean value of q∆z.

In the use of Fourier and Laplace transforms for solving the CTRW equa­

tions, we will concentrate on the asymptotic, large |z| regime, which cor­

responds to small values of k (small wave­numbers correspond to large

length­scales or wave­lengths). We thus can make a Taylor expansion of

q̂∆z(k) around k = 0 and keep only a few low order terms,

q̂∆z(k) = q̂∆z(0) + ∂kq̂∆z(0)k +
1

2
∂2

k q̂∆z(0)k2 + ..., (47)

With Eq. (46), the derivatives can be replaced with the moments,

q̂∆z(k) = 1 − i〈∆z〉k − 1

2
〈∆z2〉k2 + ... (48)

(with 〈∆z0〉 = 1). The Taylor expansion of a pdf in terms of the moments

is practical because the moments are the natural characteristics of a pdf.

Often, the distribution of spatial increments is assumed to be symmetric

around z = 0, so that 〈∆z〉 = 0, and the Taylor expansion writes in this

case as

q̂∆z(k) = 1 − 1

2
〈∆z2〉k2 + ... (49)

Temporal distributions, such as the time­step distribution q∆t(∆t) in the

waiting model, have the characteristic to be ’one­sided’, i.e. they are defined

and used only for t ≥ 0, so that it is more appropriate to use Laplace
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transforms in this case, defined as

q̃∆t(s) =

∞
∫

0

e−s∆tq∆t(∆t) d∆t.. (50)

Straightforward calculations and the use of the respective definitions leads

to the analogue of Eq. (46) for Laplace transforms,

(−∂s)
nq̃∆t(s)

∣

∣

∣

s=0
=

∞
∫

0

∆tnq∆t(∆t) d∆t = 〈∆tn〉, (51)

where the 〈∆tn〉 are again the moments. As with respect to z, we will focus

on the asymptotic, large t regime, which corresponds to small values of s,
and we make a Taylor­expansion of the Laplace transform around s = 0,

replacing through Eq. (51) the derivatives by the moments,

q̃∆t(s) = 1 − 〈∆t〉s + ..., (52)

in complete analogy to Eq. (48) (〈∆t0〉 = 1 is the normalization of q∆t). The

Taylor expansions in Eqs. (48), (49), and (52) can of course only be used if

the involved moments are finite.

5.3.3 The symmetric and the one­sided Levy distributions

The symmetric Levy distributions are defined in Fourier space as

q̂L,α
∆z (k) = exp(−a|k|α), (53)

with 0 < α ≤ 2. It is not possible to express them in closed form in real space,

with two exceptions, the case α = 2 is the usual Gaussian distribution (the

Fourier back­transform of a Gaussian is a Gaussian), and the case α = 1
is known as the Cauchy distribution (see e.g. Hughes, 1995, Chap. 4.3).

As mentioned in Sec. 5.1, the Levy distributions for α < 2 all have infinite

variance, and for α ≤ 1 they even have an infinite mean value, so that the

expansion in the form of Eq. (49) is not applicable. We can though directly

expand the exponential in Eq. (53) and find the small k expansion as

q̂L,α
∆z (k) = 1 − a|k|α + ..., (54)

The case α = 2 corresponds obviously to the classical case of Eq. (49) with

finite second moment (a ≡ (1/2)〈∆z2〉) and zero mean (we are using only

the symmetric Levy­distributions).
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If one­sided distributions with infinite variance are needed, then they can

also be defined via Fourier space as a specific asymmetric Levy distribution,

or, more convenient for our purposes, as shown in Hughes (1995) (Chap.

4.3.2), they can be defined in Laplace space as

q̃L1,β(s) = exp(−bsβ), (55)

with b strictly positive, and where now 0 < β ≤ 1. These one­sided Levy

distributions decay as t−1−β for t→ ∞, and they have the small s expansion

q̃L1,β(s) = 1 − bsβ + ... (56)

Note that for β = 1 we recover the finite mean case of Eq. (52), with b =
〈∆t〉, and the back­transform of Eq. (55) in this case yields the distribution

δ(∆t− b), i.e. the time­steps are constant and equal to b (∆t ≡ 〈∆t〉 ≡ b).

In the following, we will use the (small k) Fourier expansion for q̂∆z(k) in the

form,

q̂∆z(k) = 1 − a|k|α + ..., (57)

which for α < 2 corresponds to the Levy case, Eq. (54), and for α = 2 it

recovers the normal, finite variance case of Eq. (49), with a = (1/2)〈∆z2〉.
Correspondingly, the (small s) Laplace expansion for q̃∆t(s) will be used in

the form

q̃∆t(s) = 1 − bsβ + ..., (58)

which for β < 1 yields the Levy distribution, Eq. (56), and for β = 1 the

normal, finite mean case of Eq. (52), with b = 〈∆t〉.

5.3.4 Solving the CTRW equations with Fourier and Laplace transforms

In this section, we will illustrate the use of the Fourier and Laplace (F­L)

transform to solve the CTRW equation on the example of the waiting model,

Eqs. (40) and (41). The use of the respective convolution theorems, namely

∫

f(x− y)g(y) dy→ f̂(k) ĝ(k) (59)

23



for Fourier transforms, and

t
∫

0

φ(t− τ)ψ(τ) dτ → φ̃(s) ψ̃(s) (60)

for Laplace transforms (with f, g, φ, and ψ any transformable functions),

allows in the case of the waiting model to determine the solution in Fourier

Laplace space: For the initial condition P (z, t = 0) = δ(t)δ(z) and in the ab­

sence of any source (S = 0), Eq. (40) turns into
˜̂
Q(k, s) =

˜̂
Q(k, s) q̂∆z(k) q̃∆t(s)+

1, and Eq. (41) takes the form
˜̂
PW (k, s) =

˜̂
Q(k, s)Φ̃W (s), and we can elim­

inate
˜̂
Q and solve for

˜̂
P . Noting further that ΦW (t) =

∫∞
t q∆t(∆t) d∆t =

1 − ∫ t
∞ q∆t(∆t) d∆t, so that Φ̃W (s) = (1 − q̃∆t(s))/s, we find

˜̂
PW (k, s) =

1 − q̃∆t(s)

s [1 − q̂∆z(k)q̃∆t(s)]
, (61)

which is known as the Montroll­Weiss equation (e.g. Montroll & Weiss, 1965;

Zumofen & Klafter, 1993; Klafter, Blumen & Shlesinger, 1987).

Looking for asymptotic solutions, we insert the general form of the trans­

formed temporal and spatial step distribution, Eqs. (57) and (58), respec­

tively, into Eq. (61), which yields

˜̂
PW (k, s) =

bsβ−1

bsβ + a|k|α . (62)

Unfortunately, it is not possible to Fourier and Laplace back­transform
˜̂
PW (k, s) analytically. We can though use Eq. (46) for n = 2, namely

〈z2(s)〉 = −∂2
k
˜̂
PW (k = 0, s), (63)

to determine the mean square displacement in the asymptotic regime (note

that we set k = 0 at the end, which clearly is in the large |z| regime). Inserting
˜̂
PW (k, s) from Eq. (62) into Eq. (63), without yet setting k = 0, we find

〈z2(s)〉 = −2a2α2|k|2α−2

bs2β+1
+
aα(α− 1)|k|α−2

bsβ+1
(64)

The first term on the right side diverges for α < 1, and the second term

diverges for α < 2, so that 〈z2(s)〉 is infinite in these cases. This divergence

must be interpreted in the sense that the diffusion process is very efficient,
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so that in the asymptotic regime, PW has already developed so fat wings at

large |z| (power­law tails) that the variance, and with that the mean square

displacement, of PW is infinite, PW has already become a Levy type dis­

tribution (see also Klafter, Blumen & Shlesinger, 1987; Balescu, 2007a).

Of course, with the formalism we apply we cannot say anything about the

transient phase, before the asymptotic regime is reached. We just note here

that the velocity model (Eq. (42))in this regard is not so over­efficient, it al­

lows super­diffusion with a more gradual build­up of the fat wings of the

distribution PV (Klafter, Blumen & Shlesinger, 1987).

Less efficient diffusion can only be achieved in the frame of the waiting model

for α = 2, i.e. for normal, Gaussian distributed spatial steps (see Eq. (57)).

In this case, Eq. (64) takes the form

〈z2(s)〉 =
〈∆z2〉
bsβ+1

(65)

(a = (1/2)〈∆z2〉 for α = 2). This expression is valid for small s, and with

the help of the Tauberian theorems, which relate the power­law scaling of a

Laplace transform at small s to the scaling in original space for large t (see

e.g. Hughes, 1995; Feller, 1971) it follows that

〈z2(s)〉〉 ∼ tβ . (66)

With our restriction 0 < β ≤ 1, diffusion is always of sub­diffusive character,

and for β = 1 it is normal, as expected, since we have in this case waiting

times with finite mean and variance (see Eq. (58)).

5.4 Including Velocity Space Dynamics

Above all in applications to turbulent systems, and mainly to turbulent or

driven plasma systems, it may not be enough to monitor the position and

the timing of a particle, since its velocity may drastically change, e.g. if it

interacts with a local electric field generated by turbulence. An interesting

extension of the standard CTRW for these cases is to include, besides the

position space and temporal dynamics, also the velocity space dynamics,

which allows to study anomalous diffusive behaviour also in energy space.

To formally define the extended CTRW that also includes momentum space,

we keep Eq. (9) and Eq. (39) for position and time evolution as they are,

and newly the momentum (or velocity) also becomes a random, dynamic
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variable, with temporal evolution of the form

~pn = ∆~pn + ∆~pn−1 + ∆~pn−2 + ... + ∆~p1 + ~p0, (67)

with p0 the initial momentum, and the ∆~pi the momentum increments.

Again, one has to specify a functional form for the distribution of momentum

increments q∆~p(∆~p) in order to specify the random walk problem completely.

The solution of the extended CTRW is in the form of the distribution P (~r, ~p, t)
for a particle at time t to be at position ~r and to have momentum ~p.

The extended CTRW can be treated by Monte­Carlo simulations, as done in

Vlahos, Isliker & Lepreti (2004), or in Isliker (2008) a set of equations for the

extended CTRW has been introduced, which basically is a generalization

of Eq. (40) and Eq. (42), and a way to solve the equations numerically is

presented.

6 From random walk to fractional diffusion equations

The purpose of this section is to show how fractional diffusion equations

naturally arise in the context of random walk models. The starting point here

are the CTRW equations for the waiting model, Eqs. (40) and (41), which in

Fourier Laplace space take the form of Eq. (61), and on inserting the small k
and small s expansion of the step­size and waiting­time distributions, Eqs.

(57) and (58), respectively, the waiting CTRW equation takes the form of Eq.

(62), with α ≤ 2 and β ≤ 1. Multiplying Eq. (62) by the numerator on its

right side,

˜̂
PW (k, s)(bsβ + a|k|α) = bsβ−1, (68)

and rearranging, we can bring the equation for
˜̂
PW to the form

sβ ˜̂
PW (k, s) − sβ−1 = −a

b
|k|α ˜̂

PW (k, s). (69)

It is illustrative to first consider the case of normal diffusion, with β = 1 and

α = 2, where according to Eqs. (57) and (58) we have a = (1/2)〈∆z2〉 and

b = 〈∆t〉, so that

s
˜̂
PW (k, s) − s0 = −〈∆z2〉

2〈∆t〉 |k|
2 ˜̂
PW (k, s) (70)
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Now recall how a first order temporal derivative is expressed in Laplace

space,

d

dt
ψ(z) → sψ̃(s) − s0ψ(0), (71)

and a how a spatial derivative translates to Fourier space,

dn

dzn
f(z) → (−ik)nf̂(k) (72)

Obviously, for PW (z, t = 0) = δ(z), Eq. (70) can be back­transformed as

∂tPw(z, t) =
〈∆z2〉
2〈∆t〉∂

2
zPW (z, t), (73)

so that we just recover the simple diffusion equation of the normal diffusive

case.

6.1 Fractional derivatives

Fractional derivatives are a generalization of the usual derivatives of nth

order to general non­integer orders. There exist several definitions, and in

original space (z or t) they are a combination of usual derivatives of integer

order and integrals over space (or time). The latter property makes them

non­local operators, so that fractional differential equations are non­local

equations, as are the CTRW integral equations. For the following, we need

to define the Riemann­Liouville left­fractional derivative of order α,

aD
α
z f(z) =

1

Γ(n− α)

dn

dzn

z
∫

a

f(z′)

(z − z′)α+1−n
dz′, (74)

with Γ the usual Gamma­function, a a constant, n an integer such that

n − 1 ≤ α < n, α a positive real number, and f any suitable function.

Correspondingly, the Riemann­Liouville right­fractional derivative of order

α is defined as

zD
α
b f(z) =

(−1)n

Γ(n− α)

dn

dzn

b
∫

z

f(z′)

(z′ − z)α+1−n
dz′. (75)
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It is useful to combine these two asymmetric definitions into a a new, sym­

metric fractional derivative, the so­called Riesz fractional derivative,

Dα
|z|f(z) = − 1

2 cos(πα/2)
(−∞D

α
z + zD

α
∞) f(z).. (76)

The Riesz fractional derivative has the interesting property that its repre­

sentation in Fourier space is

(R)Dα
|z|f(z) → −|k|αf̂(k). (77)

Comparison of this simple expression with Eq. (72) makes obvious that the

Riesz derivative is a natural generalization of the usual derivative with now

non­integer α.

To treat time, a different variant of fractional derivative is useful, the Caputo

fractional derivative of order β,

(C)Dβ
t ψ(t) =

1

Γ(n− β)

t
∫

0

1

(t− t′)β+1−n

dn

dt′n
ψ(t′) dt′, (78)

with n an integer such that n− 1 ≤ β < n, and ψ any appropriate function.

The Caputo derivative translates to Laplace space as

(C)Dβ
t ψ(t) → sβψ̃(s) − sβ−1ψ(0), (79)

for 0 < β ≤ 1, which is again a natural generalization of Eq. (71) for the usual

derivatives for now non­integer β (the Caputo derivative is also defined for

β ≥ 1, with Eq. (79) taking a more general form).

Further details about fractional derivatives can be found e.g. in Podlubny

(1999) or in the extended Appendix of Balescu (2007b).

6.2 Fractional diffusion equation

Turning now back to Eq. (69), we obviously can identify the fractional Riesz

and Caputo derivatives in their simple Fourier and Laplace transformed

form, Eqs. (77) and (79), respectively, and write

(C)Dβ
t PW (z, t) =

a

b
(R)Dα

|z|PW (z, t) (80)
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>From this derivation it is clear that the order of the fractional derivatives,

α and β, are determined by the index of the step­size (q∆z) and the waiting

time (q∆t) Levy distributions, respectively. It is also clear that Eq. (80) is

just an alternative way of writing Eq. (69) or (62), and as such it is the

asymptotic, large |z|, large t version of the CTRW equations (40) and (41).

It allows though to apply different mathematical tools for its analysis that

have been developed specially for fractional differential equations.

As an example, we may consider the case β = 1 and 0 < α ≤ 2, where the

diffusion equation is fractional just in the spatial part,

∂tPw(z, t) =
a

b
(R)Dα

|z|PW (z, t) (81)

In Fourier Laplace space, this equation takes the form

P̂W (k, s) =
b

bs + a|k|α , (82)

which, on applying the inverse Laplace transform, yields

P̂W (k, t) = exp
(

−a
b
|k|αt

)

, (83)

which is the Fourier­transform of a symmetric Levy­distribution with time

as a parameter (see Eq. (53)), and with index α equal to the one of the

spatial step distribution q∆z. Thus, for α < 2, the solution has power­law

tails, and the mean square displacement (or variance or second moment) is

infinite, as we had found it in Eq. (64). For α = 2, the solution PW (z, t) is

a Gaussian (the Fourier back­transform of a Gaussian is a Gaussian), and

we have normal diffusion.

7 Action diffusion in Hamiltonian systems

So­far, our starting point for modeling diffusion was mostly the random

walk approach and a probabilistic equation of the Chapman Kolmogorov

type (Eq. (31)). Here now, we turn to Hamiltonian systems, and we will show

how from Hamilton’s equations a quasi­linear diffusion equation can be

derived. This diffusion equation is of practical interest when the Hamiltonian

system consists in a large number of particles, so that it becomes technically

difficult to follow the individual evolution of all the particles.

Let us consider a generic N−degrees of freedom Hamiltonian system with

Hamiltonian H (q,p) and equations of motion given by
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dq

dt
=
∂H

∂p
, (84)

dp

dt
=−∂H

∂q
, (85)

where q = (q1, ..., qN) and p = (p1, ..., pN) are the canonical coordinates

and momenta, respectively. In order to be integrable such a system should

have N independent invariants of the motion, corresponding to an equal

number of symmetries of the system (Goldstein, 1980). The integrability of

a system is a very strong condition which does not hold for most systems of

physical interest. However, in most cases we can consider our system as a

perturbation of an integrable one and split the Hamiltonian accordingly to

an integrable part and a perturbation. Then the description of the system

can be given in terms of the action­angle variables of the integrable part

(Note that a periodic integrable system can always be transformed to action­

angle variables (Goldstein, 1980)), so that we can write

H(J, θ, t) = H0(J) + ǫH1(J, θ, t), (86)

with J = (J1, ..., JN) and θ = (θ1, ...θN ) being the action and angle variables,

respectively. H0 is the integrable part of the original Hamiltonian and H1 is

the perturbation. The parameter ǫ is dimensionless and will be used only

for bookkeeping purposes in the perturbation theory; it can be set equal to

unity, in the final results. The evolution of the integrable system H0 is given

by the following equations of motion

J̇=0 (87)

θ̇ =ω0t+ θ0, (88)

where ω0 = ∂H0/∂J are the frequencies of the integrable system H0. The N

action variables correspond to the N invariants of the motion required for

the integrability of the system.

The perturbation H1 leads to the breaking of this invariance due to its θ

dependence. The derivation of a quasilinear diffusion equation in the ac­

tion space is the subject of this section, and the method to be used is the

canonical perturbation theory applied for finite time intervals. This method

of derivation is based on first principles and does not imply any statisti­

cal assumptions for the dynamics of the system, such as the presence of

strong chaos resulting in phase mixing or loss of memory for the system.

Moreover, it is as systematic as the underlying perturbation scheme of the

canonical perturbation theory, so it can be extended to higher order and pro­

vide results beyond the quasilinear approximation (Kominis, 2008). Also, it

is important to note that the method makes quite clear what physical ef­
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fects are taken into account in the quasilinear limit and what effects are

actually omitted. It is worth mentioning that non­quasilinear diffusion has

been studied both analytically and numerically for a variety of physical sys­

tems (Cary, Escande & Verga, 1990; Helander & Kjellberg, 1994; Benisti &

Escande, 1998; Laval & Pesme, 1983, 1999).

The basic idea of the canonical perturbation theory is the search of canonical

transformations for the perturbed system (i.e. transformations which pre­

serve the Hamiltonian structure of the system) under which the new (trans­

formed) Hamiltonian is a function of the action only. For a near­integrable

system this can be done approximately, and the new actions correspond to

approximate invariants of the motion which contain all the essential features

of the phase space structure. The transformations involved in canonical

perturbation theory are expressed in terms of the so­called mixed­variable

generating functions. These can be functions of a subset of the old variables

along with a subset of the new ones (Goldstein, 1980). Thus, the transfor­

mation from (J, θ) to (J̄, θ̄) can be expressed by a generating function of

the form S(J̄, θ, t). The transformation equations are given in the following

implicit form:

J= J̄ + ǫ
∂S(J̄, θ, t)

∂θ
, (89)

θ̄ =θ + ǫ
∂S(J̄, θ, t)

∂J̄
. (90)

Following a standard procedure (Goldstein, 1980), we seek a transformation

to new variables (J̄ , θ̄) for which the new Hamiltonian H̄ is a function of the

action J̄ alone. Expanding S and H̄ in power series of a small parameter ǫ

S= J̄θ + ǫS1 + ǫ2S2 + ... (91)

H̄ = H̄0 + ǫH̄1 + ǫ2H̄2 + ..., (92)

where the lowest­order term has been chosen to generate the identity trans­

formation J = J̄ and θ̄ = θ. The old action and angle can be also expressed

as power series in ǫ:

J= J̄ + ǫ
∂S1(J̄, θ, t)

∂θ
+ ǫ2

∂S2(J̄, θ, t)

∂θ
+ ... (93)

θ̄ =θ + ǫ
∂S1(J̄, θ, t)

∂J̄
+ ǫ2

∂S2(J̄, θ, t)

∂J̄
+ ..., (94)
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and the new Hamiltonian is

H̄(J̄, θ̄, t) = H(J, θ, t) +
∂S(J̄, θ, t)

∂t
. (95)

By substituting the respective power series in Eq. (95) and equating like

powers of ǫ for the zero order we have

H̄0 = H0, (96)

while in the first and second order we have the equations

∂Si

∂t
+ ω0

∂Si

∂θ
= H̄i − Fi(J, θ, t), i = 1, 2, (97)

with

F1(J, θ, t) =H1, (98)

F2(J, θ, t) =
1

2

∂2H0

∂J2

(

∂S1

∂θ

)2

+
∂H1

∂J

∂S1

∂θ
(99)

providing the first and second order generating function S1 and S2, respec­

tively. The latter are linear partial equations which can be solved in a time

interval of interest [t0, t] by the method of characteristics (i.e. integration

along the unperturbed orbits). Note that H̄1 and H̄2 are arbitrary functions

which can be set equal to zero (for the application of the canonical pertur­

bation theory in infinite time intervals, these functions have to be chosen so

that they cancel secular terms (Goldstein, 1980)). For a general perturbation

of the form

H1 =
∑

m 6=0

Hm(J, t)eim·θ, (100)

the solution for the first order generating function S1 can be written as

S1(J̄, θ, t; t0) = −
∑

m 6=0

eim·(θ−ω0t)
t
∫

t0

Hm(J, s)eim·ω0sds. (101)

Similarly, the solution for S2 can be readily obtained. The resulting expres­

sion (too lengthy to be presented here) is a periodic function of θ. This is the

only information we need for S2, since its exact form will not be involved in

our calculations.
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In the following, we show that the results of first order perturbation the­

ory can be utilized in order to provide an evolution equation for the angle­

averaged distribution function, which is accurate up to second order with

respect to the perturbation parameter ǫ, namely a quasilinear action dif­

fusion equation. Therefore, we can relate results from perturbation theory

applied for a single particle motion, to the distribution function, describing

collective particle motion. The latter is of physical interest in all cases where

a large number of particles is involved in collective phenomena so that a

statistical approach is required.

The evolution of the phase space distribution function F is governed by

Liouville’s equation (Goldstein, 1980)

∂F

∂t
+ [F,H ] = 0, (102)

where [., .] denotes the Poisson bracket, defined as [f1, f2] = ∇qf1 · ∇pf2 −
∇pf1·∇qf2 with q and p being the canonical positions and momenta, respec­

tively. This equation simply expresses the incompressibility of the Hamilto­

nian flow and the invariance of the number of particles. It is well­known

that for an integrable system, any function of the invariants of the motion

(actions) is a solution of the Liouville’s equation. For the case of a near­

integrable system, an approximate distribution function can be obtained

as a function of the approximate invariant of the motion, namely the new

actions J̄, so that we can write

F (J, θ, t) = F (J̄), (103)

with J̄ given implicitly by Eq. (93). To second order, with respect to ǫ we

have

J̄ = J − ǫ∆1J +
ǫ2

2

∂

∂J
· (∆1J∆1J) + ǫ2∆2J, (104)

with

∆iJ(J, θ, t; t0) =
∂Si(J, θ, t; t0)

∂θ
, i = 1, 2. (105)

Substituting (104) in (103) and utilizing a Taylor expansion with respect to

ǫ we have

F (J, θ, t)=F (J) − ǫ
∂F (J)

∂J
· (∆1J) +

ǫ2

2

∂

∂J
·
[

(∆1J∆1J) · ∂F (J)

∂J

]
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+ǫ2
∂F (J)

∂J
(∆2J). (106)

Noting that ∆iJ(J, θ, t0; t0) = 0 we have F (J, θ, t0) = F (J), and by averaging

over the angles, we obtain

f(J, t) = f(J, t0) +
ǫ2

2

∂

∂J
·
[

〈(∆1J∆1J)〉θ · ∂f(J, t0)

∂J

]

, (107)

where f is the angle­averaged distribution function

f(J, t) = 〈F (J, θ, t)〉θ , (108)

and we have used the fact that 〈∆iJ〉θ = 0 as obtained from Eqs. (105) and

the fact that Si are sinusoidal functions of θ . Taking the limit t→ t0 in Eq.

(107), we finally obtain the quasilinear action diffusion equation

∂f

∂t
= ǫ2

∂

∂J
·
[

D(J, t) · ∂f
∂J

]

, (109)

with

D(J, t) =
1

2

∂ 〈(∆1J∆1J)〉θ
∂t

(110)

being the corresponding quasilinear diffusion tensor. Identifying that ∆1J

corresponds to the first order action variation, we see that D in Eq. (110)

corresponds to the common definition of the diffusion tensor, as provided by

the statistical approach, which is based on the Kramers­Moyal expansion

of the master equation (see Sec. 3.4, and van Kampen, 1981).

It is worth mentioning that this form [Eq. (109)] of the action diffusion equa­

tion is similar to the diffusion equation obtained with the utilization of the

Fick’s Law [Eq. (21)]. However, it has been shown that for any Hamilto­

nian system, this form of the action diffusion equation is equivalent to the

Fokker­Planck equation [Eq. (34)], due to the fact that the corresponding

drift velocity and diffusion terms are related through

V =
∂D

∂z
, (111)

where z = J for the case of the action diffusion equation (see Chap. 4 in

Lichtenberg & Lieberman, 1992, and references therein) . This property is
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implied directly from the canonical form of the underlying equations of mo­

tion. More generally, it has been shown that this form of the diffusion equa­

tion has further relation with the more general class of the microscopically

reversible systems (see Molvig & Hizanidis, 1984, and references therein).

It is important to emphasize that the derivation procedure described here

does not prerequisite any statistical assumption and is only based on the

underlying equations of motion. In contrast to other statistical approaches,

it is not necessary to assume strong stochasticity related to the completely

chaotic regime where loss of memory takes place and the orbits are com­

pletely decorrelated. Therefore, Eq. (109), is capable of describing not only

diffusion in the almost homogeneous "chaotic sea" in the phase space, but

also intermittent motion in an inhomogeneous phase space structure where

resonant islands and chaotic areas are interlaced. It is worth mentioning

that the diffusion tensor D is time­dependent. The dependence of D on the

actions, for the case of time­periodic perturbations, is through smooth lo­

calized functions which are centered around the corresponding resonances

(Kominis, 2008). In the limit t → ∞ these localized functions tend to Dirac

delta functions, which commonly appear in standard derivations of the

quasilinear diffusion tensors (Zaslavski & Filonenko, 1968). However, the

consideration of this limit in the derivation of D corresponds to an exten­

sion to infinity of the limits of integration in the derivation of S1, in Eq. (101),

which implies an ergodicity assumption and a steady­state approach. In the

most general case, the diffusion tensor D [Eq. (110)] is capable of describing

not only steady­state but also transient diffusion phenomena, through its

time dependence. In this case the time scales of the action diffusion are

determined by the time­dependence of D as well as by the factor ǫ2 in the

r.h.s. of Eq. (109), which implies an actually slow diffusion process. Note

that these time scales come naturally into play and there is no need for a

priori separation of the distribution function in slow and fast varying parts

as in many heuristic derivations of the Fokker­Planck equation.

In the previous paragraphs we have derived a general quasilinear action

diffusion equation for a Hamiltonian system, with a minimum of assump­

tions on the underlying dynamics. The fact that this method of derivation is

closely related to a systematic and rigorous perturbation scheme allows for

extending these results beyond the quasilinear approximation. Therefore we

can carry our perturbation scheme to higher order in order to provide a hi­

erarchy of diffusion equations having higher­order derivatives of the action

distribution function with respect to the action, in direct analogy to statisti­

cal approaches where higher­order Kramers­Moyal expansions are consid­

ered (see Sec. 3.4, and van Kampen, 1981). Note that the most appropriate

method for handling calculations involved in higher­order perturbation the­

ory is the utilization of Lie transforms (Kominis, 2008). The hierarchy of

higher­order diffusion equations does not only provide better accuracy with
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respect to the perturbation parameter ǫ, but is also capable of describing

non­Gaussian evolution of the distribution function and resonant processes

between the particle and beats of multiple spectral components of the per­

turbation, known as nonlinear resonances.

8 Other ways to model anomalous diffusion

Escande & Sattin (2007) review and discuss under what circumstances the

Fokker­Planck equation (Eq. (34)) is able to model anomalous diffusion. In

summary, the FP equation, which is a local model, is able to model anoma­

lous diffusive behaviour in cases where there is a non­zero drift velocity,

V (z) 6= 0, anomalous diffusion is thus based on drift effects.

Klafter, Blumen & Shlesinger (1987) briefly review attempts of using the

Fokker­Planck equation with zero drift velocity, but spatially or temporally

dependent diffusion coefficient. In order to account for anomalous diffusion,

the spatial or temporal dependence of the diffusion coefficient must though

be chosen in very particular ways, which are difficult to interpret physically.

Lenzi, Mendes & Tsallis (2003) shortly discuss non­linear diffusion equa­

tions, which have the form of the simple diffusion equation as in Eq. (30),

with P though raised on one side of the equation to some power γ.

9 Applications in Physics and Astrophysics

CTRW has successfully been applied to model various phenomena of anoma­

lous diffusion, including sub­ and super­diffusive phenomena, in the fields

of physics, chemistry, astronomy, biology, and economics (see the references

in Metzler & Klafter, 2000, 2004).

Laboratory plasma in fusion devices (tokamaks) show a variety of anoma­

lous diffusion phenomena. Balescu (1995) was the first to apply CTRW to

plasma physical problems. Later, van Milligen, Sánchez & Carreras (2004)

and van Milligen, Carreras & Sánchez (2004) developed a CTRW model for

confined plasma, the critical gradient model, which was able to explain ob­

served anomalous diffusion phenomena such as ’up­hill’ transport, where

particles diffuse against the driving gradient. Isliker (2008) studied the same

physical system, with the use though of the extended CTRW that includes

momentum space dynamics, and they studied the evolution of the density

and temperature distribution and the particle and heat diffusivities.
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Also in astrophysical plasmas anomalous diffusion is ubiquitous, there are

many astrophysical systems where non­thermal (i.e. not Maxwellian dis­

tributed) particles are directly or indirectly, through their emission, ob­

served.

Dmitruk et al. (2003, 2004) analyzed the acceleration of particles inside 3­D

MHD turbulence. The compressible MHD equations were solved numeri­

cally. In these simulations, the decay of large amplitude waves was studied.

After a very short time (a few Alfvén times), a fully turbulent state with a

broad range of scales has been developed (Fig. 5).

Fig. 5. Visualization of the turbulent magnetic field | B | (top) and electric field | E |
(bottom) in the simulation box. High values are in yellow (light) and low values in

blue (dark).

The magnetic field is directly obtained from the numerical solution of the

MHD equations, with electric field derived from Ohm’s law. It is obvious that

the electric field is an intermittent quantity with the high values distributed

in a less space filling way. Magnetic and electric fields show a broad range of

scales and high degree of complexity. The energy spectrum of the MHD fields

is consistent with a Kolmogorov­5/3 power law. The structure of the velocity

field and the current density along the external magnetic field (Jz) can be

seen in Fig. 6. The formation of strong anisotropies in the magnetic field,

the fluid velocity and the associated electric field is observed. The overall

picture is that current sheet structures along the DC field are formed as a

natural evolution of the MHD fields.
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Fig. 6. Cross section of the current density Jz along the external magnetic field in

color tones. Yellow (light) is positive Jz, blue (dark) is negative, and the superposed

arrows represent the velocity field.

Following thousands of particles particles inside the simulation box, we can

learn many of the statistical properties of their evolution, e.g. the mean

square displacements
√
< ∆x2 >,

√
< ∆v2 >, or the velocity distribution

etc. can be determined. Electrons and ions are accelerated rapidly at the

nonlinear small scale structures formed inside the turbulent volume, and

non­thermal tails of power­law shape are formed in the velocity distribu­

tions. Most particles seem to escape the volume by crossing only a few of

the randomly appearing current sheets. A few particles are trapped in these

structures and accelerated to very high energies. The Fokker­Planck equa­

tion is not the appropriate tool to capture particle motion in the presence

of the random appearance of coherent structures inside such a turbulent

environment.

Vlahos, Isliker & Lepreti (2004) performed a Monte Carlo simulation of the

extended CTRW in position and momentum space, in application to flares

in the solar corona, with particular interest in the appearance of the non­

thermal energy distributions of the so­called solar energetic particles.

10 Summary and Discussion

Brownian motion is a prototype of normal diffusion, and its analysis has

brought forth a number of tools that today are very much in use for model­

ing a wide variety of phenomena. Normal diffusion occurs in systems which

are close to equilibrium, like the water in Brown’s experiment. It has now

become evident that phenomena of anomalous diffusion are very frequent,

because many systems of interest are far from equilibrium, such as turbu­

lent systems, or because the space accessible to the diffusing particles has

a strange, e.g. fractal structure. The tools to model these phenomena, con­

tinuous time random walk, stochastic differential equations, and fractional

diffusion equations, are still active research topics.
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